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Abstract— In this paper we propose a framework for inte-
grating map-based relocalization into online direct visual odom-
etry. To achieve map-based relocalization for direct methods,
we integrate image features into Direct Sparse Odometry (DSO)
and rely on feature matching to associate online visual odometry
(VO) with a previously built map. The integration of the
relocalization poses is threefold. Firstly, they are incorporated
as pose priors in the direct image alignment of the front-end
tracking. Secondly, they are tightly integrated into the back-end
bundle adjustment. Thirdly, an online fusion module is further
proposed to combine relative VO poses and global relocalization
poses in a pose graph to estimate keyframe-wise smooth and
globally accurate poses. We evaluate our method on two multi-
weather datasets showing the benefits of integrating different
handcrafted and learned features and demonstrating promising
improvements on camera tracking accuracy.

Index Terms— SLAM, relocalization, map-based localization

I. INTRODUCTION

Visual odometry (VO) and visual Simultaneous Localiza-
tion and Mapping (SLAM) are important components of
many autonomous systems that use cameras as one of their
sensor modalities. For these systems, detection of a re-visited
place can be crucial in correcting accumulated drift [1],
recovering from a tracking failure or solving the kidnapped
robot problem [2]. These issues can be solved by camera-
based relocalization, which in this work is referred to as a
process of continuous online estimation of 6DoF poses based
on a pre-generated map. We aim to extend the conventional
use of relocalization as a recovery module [3], [4] and
integrate its continuous estimates into a visual odometry
(VO) framework in a much more involved fashion.

Relocalization is a challenging task, since appearance of
a map sequence can differ significantly from the currently
acquired visual data due to weather and seasonal changes
as well as human activities like traffic and construction.
While feature-based VO and SLAM methods can tackle this
problem by relying on the repeatability and descriptiveness
of local features, there is no straightforward way for direct
methods to achieve relocalization. Usually direct methods
sample points that hold only pixel intensity values, which
cannot offer any of the aforementioned feature properties.
Only limited efforts have been made to resolve such issue.
In GN-Net [5], the raw images are replaced by learned
feature maps to enhance the invariance to brightness changes.
LDSO [6], on the other hand, proposes to integrate image
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Fig. 1: Left: Proposed relocalization pipeline. The relocal-
ization module estimates global camera poses against a pre-
built map. Relocalization poses are tightly integrated into
the front-end tracking and the back-end optimization of a
direct VO framework to increase accuracy and robustness of
camera pose estimation. Furthermore, the relative VO poses
and global relocalization poses are fused in a pose graph
optimization to obtain smooth and globally accurate poses.
Top right: Overlay of the reference map (blue) with the VO
point cloud (red). Bottom right: The fused poses (green)
closely follow the ground truth trajectory (orange line).

features into DSO [7], thus combining the advantages of
both families. In this work, we proceed in the direction of
merging image features into direct methods. When a new
frame arrives, in addition to tracking features with respect
to a previous reference frame, we also track them against
a pre-built map and obtain a relocalization pose by feature
matching. We further propose to utilize relocalization poses
at three levels: by incorporating them as pose priors in
the front-end tracking, by tightly integrating them into the
back-end bundle adjustment (BA), and by fusing the global
relocalization poses with relative VO estimates to get a
smooth and globally accurate trajectory. Tight integration
of pose priors into a direct sparse odometry framework
is inspired by the D3VO work [8], where relative camera
transformations estimated by a deep network are utilized
instead. To our knowledge our work is the first approach
that introduces online relocalization for direct VO and tightly
integrates the relocalization poses into the VO optimization
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back-end. Along with our pose graph, optimization-based
fusion we offer a complete direct visual SLAM system that
provides globally and locally accurate camera localization in
a monocular setting. Moreover, unlike LDSO [6] which con-
siders only ORB features [9] for place recognition, feature
tracking and matching, we integrate different handcrafted and
learned features to unveil their pros and cons.

II. RELATED WORK

A. Indirect versus Direct VO / SLAM

Indirect VO / SLAM methods [10], [3], [4] have domi-
nated the field for many years. Their success can be partially
attributed to robust feature detectors and descriptors that
incorporate invariance to geometric noise, brightness and
viewpoint. An alternative, direct formulation, which skips
abstraction into a feature space and directly works with pixel
intensities, has been firstly proposed in [11] using an Ex-
tended Kalman Filter and was re-formulated as a non-linear
optimization problem in [12], [7]. Direct methods sample
interest points across an entire image space including edges
and less-textured surfaces, which makes them generally
more robust in cornerless environments. On the other hand,
direct approaches are fragile to rapid motion and changes
in illumination. Moreover, a good initialization is important
to ensure optimization convergence and to guarantee an
optimal solution. This makes direct methods inferior in wide-
baseline matching, such as loop closure and relocalization,
where global accuracy is desired. This issue is addressed in
LDSO [6], where loop closures are achieved by adapting a
point selection strategy and by introducing local features into
a direct method.

B. Handcrafted and Learned Features

In recent years, the number of computer vision tasks that
require feature matching has significantly increased [13],
[14], [3], [15]. These applications introduce different feature
requirements such as computational efficiency, invariance
to scale and affine transformation, as well as robustness
to noise and changes in lighting conditions. For many
years SIFT [16] has been one of the most widely used
feature descriptor, however its extraction is admitted to be
computationally demanding [9]. Binary ORB features [9]
that combine a FAST keypoint detector [17] and a BRIEF
descriptor [18] have been proposed as an open-source, fast
and lightweight alternative to SIFT. With the recent advances
of deep learning, learned feature representations have shown
a superior performance to handcrafted features [19]. Neural
networks have been applied to separate tasks of keypoint
localization [20], [21], descriptor learning [22], as well as to
end-to-end feature extraction from images [23], [24]. In our
work, we select three representative learned features, namely,
SuperPoint [25], R2D2 [24] and ASLFeat [26]. They are
integrated into a direct VO method and used to achieve map-
based relocalization.

III. SYSTEM OVERVIEW

In the following sections we will describe in detail the
proposed SLAM and relocalization framework as shown in
Fig. 1. Our pipeline consists of three major modules: 1)
a relocalization module that obtains reference poses with
respect to a pre-build map (Sec. V); 2) a VO module that
integrates the relocalization information to perform robust
and accurate camera tracking within a local coordinate frame
(Sec. IV); 3) a fusion module that fuses global map-based
relocalization poses and relative visual odometry poses to
obtain a smooth and globally accurate camera trajectory
(Sec. VI). While our VO module uses information from the
relocalization module, it is also used to generate the map we
localize against. We will first describe our VO approach and
afterwards proceed with the relocalization module. Finally,
we will explain how both components are integrated in the
fusion module.

IV. VISUAL ODOMETRY

Our VO module builds on top of DSO [7], a state-of-the-
art direct visual odometry algorithm. For each new frame
DSO estimates its initial pose with respect to a reference
keyframe by direct image alignment. Poses of keyframes are
then refined in a sliding window, where bundle adjustment
jointly optimizes the depth of points and all keyframe poses
by minimizing a photometric energy function

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj , (1)

where F is a set of all keyframes, Pi a set of points hosted
in a keyframe i, and obs(p) a set of keyframes that observe
a point p. Epj is a weighted photometric error term for a
point p hosted in a frame i and observed in a frame j. For
details on the energy formulation please refer to [7].

A. Pose Priors

To improve the accuracy and robustness of VO, we use
the information gained from relocalization against a pre-built
map (Sec. V). The relocalization poses are used as priors for
both the front-end tracking (coarse tracker) and the back-end
bundle adjustment.

1) Pose Prior for Coarse Tracker: In the tracking front-
end we use a relative pose prior based on the global
poses obtained from the relocalization module (Sec. V).
This prior serves as initialization for the two-frame direct
image alignment and replaces the motion model analogue.
In addition, we construct a factor graph corresponding to
the coarse-to-fine pose refinement and introduce the prior
based on the relocalization poses as a factor between a
reference keyframe and the current frame. If the pose prior
is unavailable due to an unsuccessful relocalization attempt,
the front-end is initialized according to a constant motion
model, as described in [7].



Fig. 2: Example of a factor graph with 4 keyframes in the
back-end optimization. To emphasize our contribution, some
variables such as observed points are not shown (see Fig.
5 in [7]). Each relocalization factor represents a relative
relocalization pose between corresponding keyframes. When
a keyframe is marginalized (bottom), residual energy after
the Schur complement is kept as a factor (green).

2) Pose Prior for Bundle Adjustment: Keyframe poses
optimized in the bundle adjustment are defined with respect
to a common local coordinate frame. Therefore, one could
think of lifting this common coordinate frame to a global
frame based on the information obtained from relocalization
and performing optimization of the global poses directly in
the bundle adjustment. However, due to the marginalization
of keyframes, this leads to numerical instabilities, especially
in situations when relocalization poses are sparse or not
available for the first frame. Hence, similar to the coarse
tracker prior, we utilize relative pose priors between the
keyframes respectively. We can derive a factor graph as
shown in Fig. 2, where the red boxes refer to the photometric
factors defined in Eq. (1) and the green boxes refer to the
marginalization factors. Relocalization factors (blue boxes)
are imposed in the form of priors T̂j

i on the relative pose
Tj

i ∈ SE(3) between keyframes i and j according to Eq. (2).

Epose =
∑
i∈F

∑
j∈Ri
j<i

Log(T̂i
jT

j
i )

TΣ−1Log(T̂i
jT

j
i ) (2)

Here F is a set of all keyframes and Ri is a subset of F ,
which includes keyframes that have a relocalization pose. In
our work we limit |Ri| ≤ 2. When selecting keyframes for
Ri, the priority is given to the later ones, since the oldest
keyframes can be shortly scheduled for marginalization. The
inverse of a covariance matrix Σ−1 ∈ IR6×6 is modeled as
a constant diagonal matrix and Log(·) is a mapping from an
element of the Lie group SE(3) to its twist coordinates in
se(3).

Combining photometric and relocalization factors, the total
objective function becomes

Etotal = Ephoto + wEpose, (3)

where w = 103 is introduced to mitigate a large photometric
error. Ephoto and Epose are defined as in Eq. (1) and Eq. (2)

respectively. The minimization of Etotal is performed in a
Gauss-Newton optimization scheme.

B. Feature Tracking

While photometric formulations show superior perfor-
mance with respect to VO, they struggle in tasks like loop
closure and relocalization, since in these cases a good ini-
tialization and photometric consistency cannot be guaranteed.
To be able to solve these problems, we follow the idea of
LDSO [6], which replaces a subset of the tracked and opti-
mized points by keypoints with associated local descriptors.
Since keypoints are tightly integrated into the photometric
bundle adjustment, their accurate depth is estimated using
an entire optimization window. While LDSO limits the use
to handcrafted ORB features [9], we keep our pipeline more
general, which enables integration of any local keypoint
descriptors, including learned ones.

The tracked features now can be used to solve tasks
like loop closure to generate globally consistent maps or to
perform relocalization against a pre-build map (Sec. V).

V. RELOCALIZATION

Relocalization is carried out in a two-step approach.
Firstly, we find potential candidates in the map database
using Bag-of-Words (BoW) image retrieval (Sec. V-A). Sec-
ondly, a relative pose between a current frame and its map-
based reference is estimated from feature correspondences
and a global relocalization pose is computed (Sec. V-B).

A. Bag-of-Words Image Retrieval

After the system has received a new image, it extracts
local 2D features and converts them to a global descriptor
using a BoW database.1 Since such a representation does not
preserve the order of features in the image, it removes the
spatial information of the feature layout and offers only a
limited description capability. To circumvent this problem,
we follow the pyramid matching method proposed in [28].
In particular, we switch to a multi-level representation of an
image, which can be intuitively viewed as placing a grid of
increasingly coarser resolution and aggregating the features
in each grid cell for local histogram computations. We refer
to Eq. (3) of [29] for further details of the underlying
approach.

To limit the number of images considered for the similarity
measure computation, we take advantage of the sequential
nature of our queries and assume that the correct tracking
references lie spatially close for consecutive frames.

B. Pose Refinement

We select the top three retrieval candidates from a pre-built
map and proceed to feature matching. False correspondences
are pruned using Lowe’s ratio test [16] with threshold τ =
0.85. Having 3D - 2D correspondences between a reference
map frame and a current frame we can estimate 6DoF relative
transformation using a Perspective-n-Points (PnP) algorithm
in a RANSAC scheme [30] and refine it by minimizing a

1We use fbow, a fast version of DBoW2/DBoW3 libraries [27].



Fig. 3: Example of a fusion pose graph. Circular components
represent fixed variables. Solid arrows refer to imposed
constraints on the optimized variables, whereas dotted arrows
represent their initialization. The direction of arrows depicts
relative transformation between corresponding coordinate
systems. A white rectangle denotes a keyframe that is
scheduled for marginalization.

geometric projection error. The final global pose is computed
by concatenating the respective relative transformation to the
global pose of a map candidate that has the biggest number
of feature correspondences.

VI. FUSION

In addition to the integration of relocalization poses into
direct image alignment and bundle adjustment, we propose
a local pose graph to fuse odometry and relocalization
estimations online. Since our relocalization module computes
relative poses with respect to global map poses, they are
suitable as pair-wise pose observations in a traditional pose
graph framework. To avoid inconsistencies caused by updates
in the active window, we base our pose graph on marginal-
ized keyframes.

The main objective of the local pose graph optimization
lies in the estimation of a fused pose Fm ∈ Sim(3) for a
keyframe m that has been scheduled for marginalization.
To build the graph we consider only keyframes that appear
earlier in the sequence and have a relocalization pose. After
all keyframes are chosen, pose values are initialized based
on the oldest keyframe, which has already received a fused
pose. Specifically, the initialization of estimated fused pose
Fj of a keyframe j is achieved by concatenating a relative
keyframe pose Tj

i to a fused pose Fi of a reference keyframe
i, i.e. Fj := Tj

iFi. An example of the proposed pose graph
can be seen in Fig. 3.

We distinguish two types of constraints, namely odometry-
based ei,j and map-based li,k, which are defined in Eq. (4)
and Eq. (5) respectively. In Eq. (5) M denotes a map
trajectory and T̂ corresponds to global relocalization poses.

ei,j := Log(Ti
jF

j
i ) (4)

li,k := Log((T̂iM
−1
k )−1FiM

−1
k ) (5)

In Eqs. (4) and (5), Log(·) defines the mapping from an ele-
ment of the Lie group Sim(3) to its tangent space coordinates
in sim(3). The total energy, which is minimized in the local
pose graph with N keyframes, is represented by Eq. (6):

Efusion = Evo + wEmap (6)

=
∑

i,j∈Fm

eTi,jΣ
−1ei,j + w ·

∑
i∈Fm

∑
k∈Li

lTi,kΛ−1li,k,

where Fm is a set of selected keyframes together with
the keyframe m, Li is a set of tracking references for
the keyframe i. Lastly, Σ−1,Λ−1 ∈ IR7×7 are inverses of
covariance matrices, which are modeled as constant diag-
onal matrices. Since the relocalization poses are computed
using the PnP algorithm and 3D-2D feature correspondences
(Sec. V), an odometry scale is not recovered. Thus, we set
a corresponding entry in the covariance matrix Λ to a large
number. A weighting factor w = 102 is chosen empirically.

In our implementation, we take advantage of the possibil-
ity of having several relocalization references per keyframe
and impose at most two measurement constraints from the
map. For optimizations we fix all map poses together with
the reference keyframe. Our pose graph optimization is
implemented based on g2o [31].

VII. EXPERIMENTS

We choose two datasets to evaluate our method, namely
the 4Seasons Dataset [32] and the Oxford RobotCar
Dataset [33]. 4Seasons is a novel cross-season and multi-
weather outdoor dataset created by traversing nine different
environments multiple times. It provides accurate ground
truth 6DoF camera poses with up-to centimeter precision.
For our evaluations, we select one urban environment and
use the sequences corresponding to six different traversals,
which were captured in March and April of 2020. Since
the sequences capture minor seasonal changes, we use them
as a relatively less challenging setting. Oxford RobotCar
is a large-scale dataset which is created by traversing a
single route in Oxford for over one year. It thus contains
significantly different scene layouts, weather and seasonal
conditions. For a more challenging setting, we choose 3
sequences: 2014-11-18-13-20 (cloudy), 2014-12-09-13-21
(overcast) and 2015-08-12-15-04 (sunny) and use the pro-
vided Real-time Kinematic (RTK) poses [34] as ground truth.

A. Integrating Pose Prior to Visual Odometry

To verify the benefits of integrating pose priors based on
the relocalization module (Sec. IV-A) into the VO system
of DSO, we conduct thorough experiments on the chosen
datasets. For each dataset we create sequence pairs, such
that one sequence from every pair is used for running VO,
whereas the other is deployed for generating the map. Three
settings are evaluated for each sequence pair, namely “no
prior” (i.e. conventional VO), “prior in the front-end track-
ing” and “prior in both the front-end tracking and the back-
end BA”. In addition, we evaluate the influence of integrating
different feature types into the direct method, namely a
handcrafted feature, ORB [9], and three learned features,
SuperPoint [25], ASLFeat [26] and R2D2 [24]. The relative
pose error (RPE) [35] is adopted for quantification. As
pointed out by [35], rotational errors appear as translational
errors when a camera moves, we therefore only consider the
translational error in meters. The relative errors are computed
by using an interval of seven keyframes.

The results on the 4Seasons sequences are shown in
Table I, where the rows are grouped and arranged according



Configuration Odometry / Map no prior / prior in front-end / prior in front- and back-end
ORB SuperPoint ASLFeat R2D2

same sequence 03-24 17-36-22 / 03-24 17-36-22 0.31 / 0.20 / 0.11 0.36 / 0.09 / 0.09 0.11 / 0.16 / 0.15 1.40 / 0.18 / 0.17
shadows / shadows 03-24 17-36-22 / 03-24 17-45-37 0.39 / 0.40 / 0.19 0.36 / 0.13 / 0.09 0.11 / 0.19 / 0.15 1.61 / 0.20 / 0.18

sunny / sunny 04-07 10-35-45 / 04-07 10-20-32 0.42 / 0.23 / 0.19 0.48 / 0.32 / 0.17 0.49 / 0.24 / 0.15 1.22 / 0.47 / 0.42
sunny / shadows 04-07 10-35-45 / 03-24 17-36-22 0.39 / 0.25 / 0.59 0.40 / 0.32 / 0.26 0.67 / 0.41 / 0.26 1.46 / 0.71 / 0.86

shadows / overcast 03-24 17-36-22 / 03-03 11-52-19 0.59 / 0.39 / 0.37 0.41 / 0.15 / 0.13 0.15 / 0.35 / 0.29 1.35 / 0.65 / 0.53
sunny / foliage 04-07 10-35-45 / 04-23 19-37-00 0.40 / 0.35 / 0.64 0.40 / 0.30 / 0.37 0.69 / 0.50 / 0.54 1.45 / 1.34 / 1.44

TABLE I: Relative Pose Error (RPE) on 4Seasons sequences. Each column shows the results of integrating different features
into the direct method. The values are expressed in meters and computed with an interval of seven keyframes. The best
results are shown in bold.

Configuration Odometry / Map no prior / prior in front-end / prior in front- and back-end
ORB SuperPoint ASLFeat R2D2

same sequence 2014-12-09-13-21-02 / 2014-12-09-13-21-02 0.11 / 0.10 / 0.10 0.13 / 0.11 / 0.10 0.89 / 0.26 / 0.15 0.29 / 0.10 / 0.11
cloudy / overcast 2014-11-18-13-20-12 / 2014-12-09-13-21-02 0.27 / 0.22 / 0.23 0.38 / 0.24 / 0.15 0.96 / 0.23 / 0.16 0.74 / 0.17 / 0.16
cloudy / sunny 2014-11-18-13-20-12 / 2015-08-12-15-04-18 0.28 / 0.32 / 0.35 0.35 / 0.20 / 0.16 1.08 / 0.32 / 0.17 0.73 / 0.58 / 0.49

overcast / cloudy 2014-12-09-13-21-02 / 2014-11-18-13-20-12 0.12 / 0.10 / 0.11 0.12 / 0.14 / 0.17 0.83 / 0.23 / 0.15 0.25 / 0.15 / 0.17
overcast / sunny 2014-12-09-13-21-02 / 2015-08-12-15-04-18 0.11 / 0.12 / 0.13 0.11 / 0.14 / 0.16 0.84 / 0.23 / 0.13 0.24 / 0.16 / 0.23
sunny / cloudy 2015-08-12-15-04-18 / 2014-11-18-13-20-12 0.12 / 0.15 / 0.22 0.11 / 0.12 / 0.13 0.29 / 0.15 / 0.12 0.42 / 0.29 / 0.37

sunny / overcast 2015-08-12-15-04-18 / 2014-12-09-13-21-02 0.12 / 0.15 / 0.13 0.12 / 0.14 / 0.15 0.27 / 0.20 / 0.15 0.38 / 0.18 / 0.14

TABLE II: Relative Pose Error (RPE) on Oxford RobotCar sequences. Each column shows the results of integrating different
features into the direct method. The values are expressed in meters and computed with an interval of seven keyframes. The
best results are shown in bold.

to increasing difficulties. Note that the first row corresponds
to the case of using the same sequence for the map and VO,
which is idealistic and is shown as reference. As it can be
seen from the table, the pose priors based on the relocaliza-
tion poses generally improve camera tracking. Some notable
exceptions appear with ASLFeat for the sequences with
shadows, where the relocalization accuracy is not sufficient
to boost pure visual odometry estimates.

The results on Oxford RobotCar are presented in Table II.
For the selected pair sequences the corresponding images
from the map and VO recording often look significantly
different. Therefore, the performance of matching ORB and
SuperPoint features starts to degrade, and the integration
of pose priors does not result in the improvement when
compared to pure VO. It should be noted, though, that despite
underperforming feature matching, our integration maintains
the system stability and does not significantly worsen the VO
performance. On the other hand, in these more challenging
conditions, relocalization based on more advanced features
like ASLFeat and R2D2 helps to improve over pure VO, as
shown in the last two columns.

B. Map-Based Relocalization and Fusion with VO

In this section, we verify the quality of the global relo-
calization poses and the benefit of fusing them with the VO
output. As explained in Section VI, our fusion method can
estimate global poses defined in the reference coordinate
system of the map. This makes it possible to evaluate the
global pose errors. In all the following experiments, the
absolute trajectory error (ATE) [35] is used.

On the 4Seasons dataset we select three sequence pairs
with increasingly challenging configurations on weather and
seasonal conditions, namely “shadows / shadows”, “shad-
ows / overcast” and “sunny / foliage”. The two features
that work dedicatedly on grayscale images, namely ORB

and SuperPoint, are evaluated. The cumulative error plots
together with some example images from the odometry and
the map sequences are shown in Fig. 4. It is apparent
that fusing the relocalization poses with the VO results
consistently improves pose accuracy. It is worth noting that
the relocalization curves often saturate to values less than
100%, which means we do not get relocalization poses for
all keyframes. Yet our fusion unquestionably boosts the per-
formances in those cases. Due to the significant differences
caused by seasonal change, relocalization based on ORB
features is unsuccessful for the majority of keyframes in
the configuration of “sunny / foliage”. Therefore, fusion
estimates are not globally accurate in this case.

We further verify our relocalization and fusion on the
Oxford RobotCar dataset, using the same sequence pairs as
in the previous section. All the four selected features are
tested and the cumulative absolute errors are shown in Fig. 5.
Despite the more challenging configurations compared to the
4Seasons experiments, our fusion consistently improves the
performances over relocalization for all the tested features.

C. Runtime

Table III presents a timing assessment of our system. The
values are collected on a machine with Intel Core i7-8700K
CPU, 32 GB RAM. We demonstrate results for ORB and
SuperPoint features to account for the differences in their
extraction and description.

As it can be seen from the table, relocalization based on
ORB features is fast, which allows tracking to be performed
in real-time. Inference of SuperPoint features remains a bot-
tleneck, which can be mitigated by porting inference to GPU
and incorporating further optimization techniques. To adhere
to spatial BoW image retrieval, multi-level histograms can be
computed in parallel. BA and fusion run at a keyframe rate
and, therefore, are not limiting the real-time performance.
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Fig. 4: Cumulative Absolute Trajectory Error on 4Seasons sequences. Fusing relocalization poses with VO in a pose graph
consistently improves the absolute pose accuracy. Note that ORB does not perform well for “sunny / foliage” due to the
low relocalization success rate caused by significant appearance changes.
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Task Rate Mean ± std [ms]
ORB SuperPoint

R
el

oc

Feature Extraction F 5.63 ± 1.04 220.93 ± 5.70

IR BoW F 2.85 ± 0.27 2.26 ± 0.33
Spatial BoW 7.08 ± 2.79 8.50 ± 4.51

Pose Estimation F 8.93 ± 7.27 9.60 ± 4.16
Coarse Tracker F 2.66 ± 13.06

BA + Marginalization KF 60.60 ± 11.93
Fusion KF 3.54 ± 1.11

TABLE III: Runtime evaluation in milliseconds on the 4Sea-
sons dataset. Relocalization is performed on the shadows /
shadows odometry-map setting. Tasks run at the frame (F)
or the keyframe-rate (KF) (5 - 10 keyframes per second [7]).

VIII. CONCLUSION

In this paper we present a complete framework which
combines direct VO and feature-based relocalization in an

online and tightly-coupled fashion. We extensively evaluate
our approach on two multi-weather datasets. Our experiments
show that by integrating pose priors obtained from relocal-
ization into both the front-end tracking and the back-end
optimization of a direct VO method, we can significantly im-
prove the tracking accuracy. We also show that the proposed
fusion module is able to estimate globally accurate poses,
even when relocalization is not successful for every frame.
Furthermore, using our pipeline we leverage the strengths
and uncover some of the weaknesses of different feature
types. We hope that our work has revealed the power of
combining direct and indirect approaches in the context of
simultaneous localization and mapping (SLAM) and that it
will drive further research in this direction.
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